NEC 304

STLD

Lecture 30

Random Access Memory (RAM)

Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

Overview

- ^o Memory is a collection of storage cells with associated input and output circuitry
 - Possible to read and write cells
- ^o Random access memory (RAM) contains words of information
- ° Data accessed using a sequence of signals
 - Leads to timing waveforms
- ° Decoders are an important part of memories
 - Selects specific data in the RAM
- Static RAM loses values when circuit power is removed.

Preliminaries

° RAMs contain a collection of data bytes

- A collection of bytes is called a word
- A sixteen bit word contains two bytes
- Capacity of RAM device is usually described in bytes (e.g. 16 MB)
- [°] Write operations write data to specific words
- ° Read operations read data from specific words
- ° Note: new notation for OR gate

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

RAM Interface Signals

- [°] Data input and output lines carry data
- [°] Memory contains 2^k words
 - k address lines select one word out of 2^k
- [°] Read asserted when data to be transferred to output
- ^o Write asserted when data input to be stored

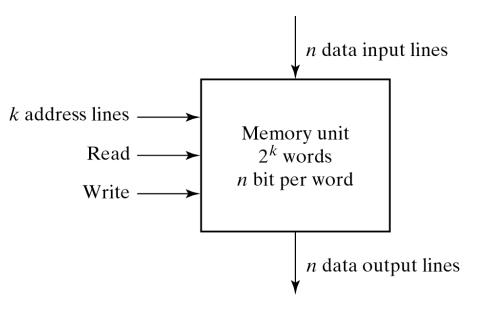
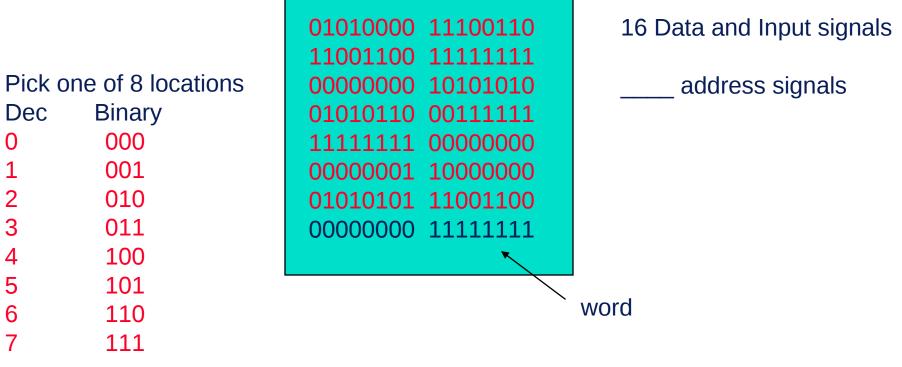



Fig. 7-2 Block Diagram of a Memory Unit

Random Access Memory Fundamentals

° Lets consider a simple RAM chip

- 8 words of 2 bytes each (each word is 16 bits)
- How many address bits do we need?

Each bit stored in a binary cell

RAM Size

° If memory has 2 ^k words, k address bits are needed	Men
audiess bits are needed	Binary
° 2³ words, 3 address bits	000000000
	000000000
° Address locations are labelled 0 to 2 ^k -1	000000001
° Common subscripts:	
° Kilo – 2 ¹⁰	111111110
0.0.0.000	111111111
° Mega – 2 ²⁰	111111111
° Giga - 2 ³⁰	

ress	
decimal	Memory contest
0	1011010101011101
1	1010101110001001
2	0000110101000110
•	:
•	:
1021	1001110100010100
1022	0000110100011110
1023	1101111000100101
	decimal 0 1 2

Fig. 7-3 Content of a 1024×16 Memory

Write Operation

- 1. Apply binary address of word to address lines
- 2. Apply data bits to data input lines
- **3. Activate write input**

Data output lines unused

Read input signal should be inactive

Delay associated with write

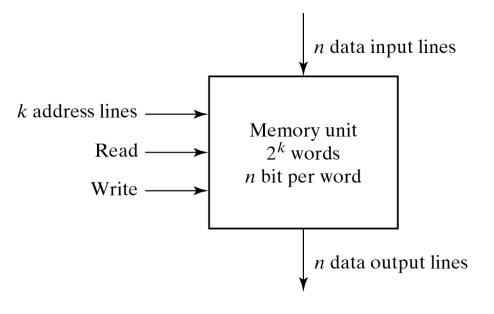


Fig. 7-2 Block Diagram of a Memory Unit

Read Operation

- 1. Apply binary address of word to address lines
- 2. Activate read input

Data input lines unused Write input signal should be inactive

Delay associated with read

Memory enable used to allow read and writes

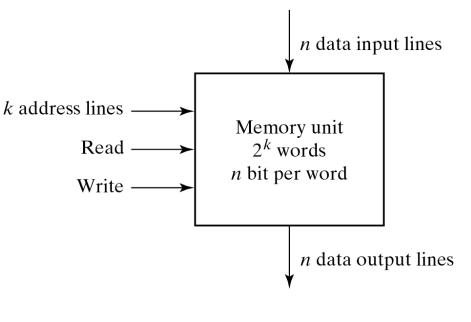
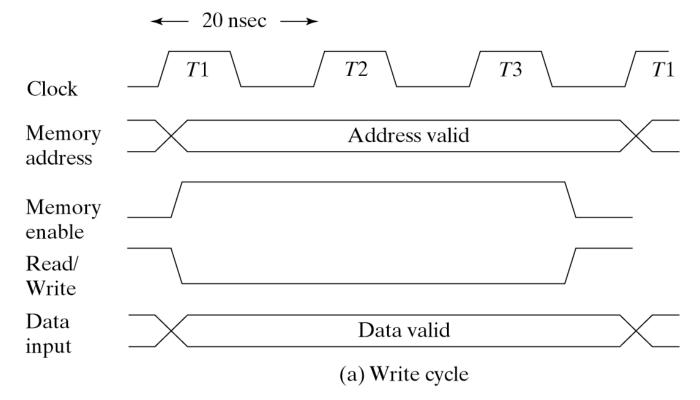



Fig. 7-2 Block Diagram of a Memory Unit

Memory Timing – write operation

- Memory does not use a clock
 - Control signals may be generated on clock edges
- ° Cycle time time needed to write to memory
- If cycle time is 50 ns, 3 clock edges required (T1, T2, T3)

Timing Waveforms – read operation

- Access time indicates time to read
- Address indicates location
- Data valid on Data Output following access time

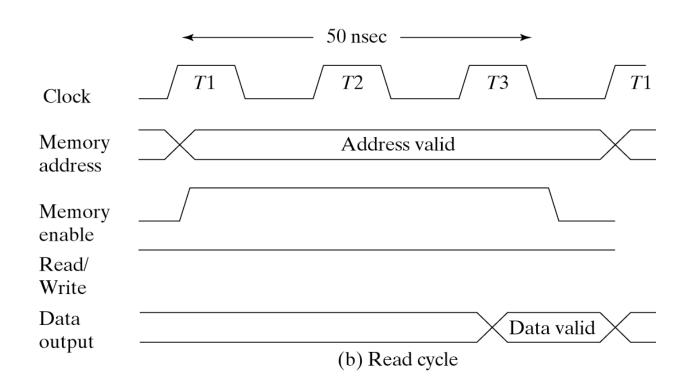


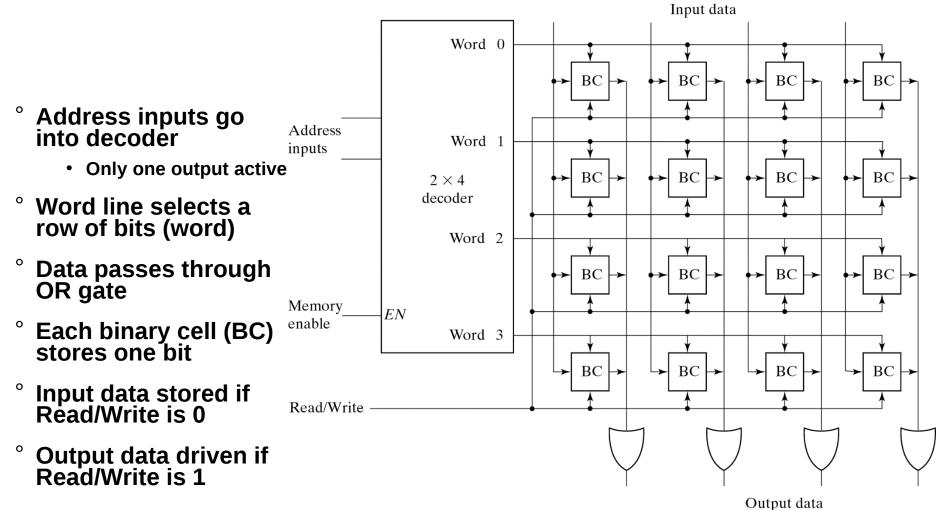
Fig. 7-4 Memory Cycle Timing Waveforms

Multiple clock signals needed for data read in this example * Note ordering of signals (address, mem enable)

Comments about Memory Access and Timing

- Most computers have a central processing unit (CPU)
 - Processor generates control signals, address, and data
 - Values stored and then read from RAM
- The timing of the system is very important.
 - Processor provides data for the cycle time on writes
 - Processor waits for the access time for reads

Types of Random Access Memories


^o Static random access memory (SRAM)

- Operates like a collection of latches
- Once value is written, it is guaranteed to remain in the memory as long as power is applied
- Generally expensive
- Used inside processors (like the Pentium)

[°] Dynamic random access memory (DRAM)

- Generally, simpler internal design than SRAM
- Requires data to be rewritten (refreshed), otherwise data is lost
- Often hold larger amount of data than SRAM
- Longer access times than SRAM
- Used as main memory in computer systems

Inside the RAM Device

Output uu

Fig. 7-6 Diagram of a 4 \times 4 RAM

Inside the SRAM Device

- ° Basis of each SRAM cell is an S-R latch
- $^{\circ}$ Note that data goes to both S and R
- ° Select enables operation
- ° Read/write enables read or write, but not both

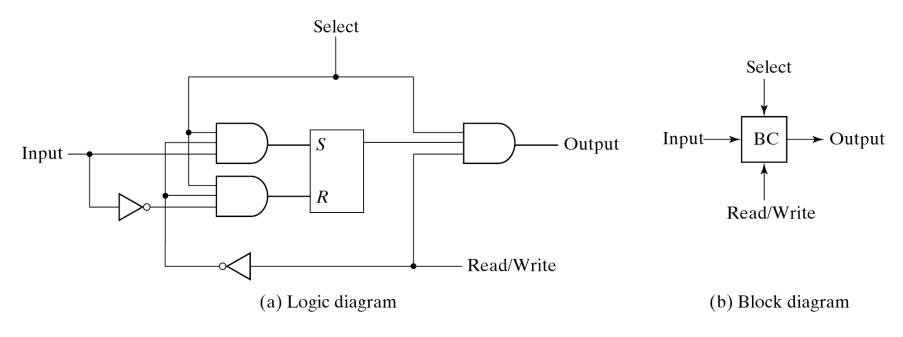


Fig. 7-5 Memory Cell

Inside the SRAM Device

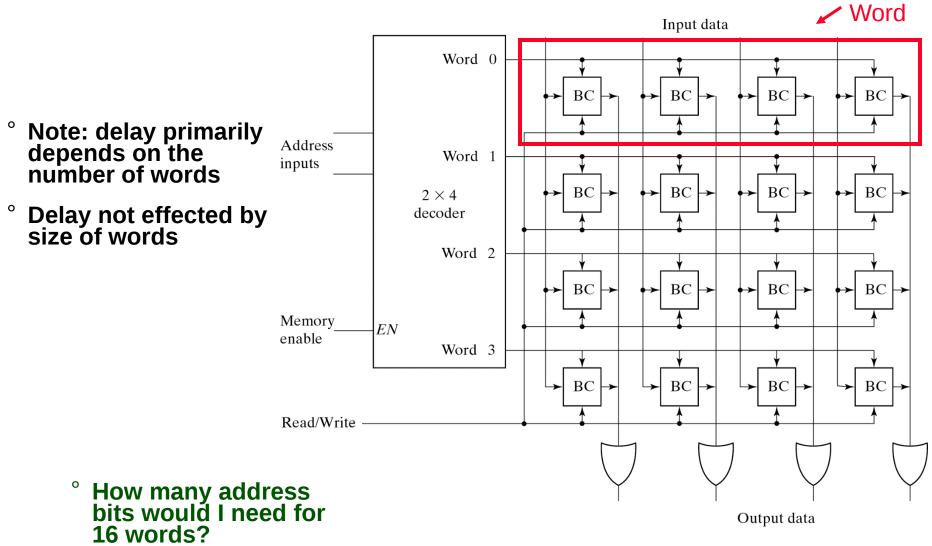


Fig. 7-6 Diagram of a 4×4 RAM

Summary

- [°] Memories provide storage for computers
- ° Memories are organized in words
 - Selected by addresses
- ° SRAMs store data in latches
 - Accessed by surrounding circuitry
- ° RAM waveforms indicate the control signals needed for access
- ° Words in SRAMs are accessed with decoders
 - Only one word selected at a time